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LETTER TO THE EDITOR

Self-dual D-dimensional quantuin Potts model with
multi-spin interactions

Loic Turban

Laboratoire de Physique du Solidet, Université de Nancy I, Faculté des Sciences, BP no
239, F-54506 Vandoeuvre les Nancy, France

Received 21 January 1982

Abstract. We introduce a family of D-dimensional g-state quantum Potts models with
multi-spin interactions which are self-dual for any D. These models are introduced using
their (d = D +1)-dimensional classical formulations and the transfer matrix technique.
The self-duality is proved on the quantum Hamiitonian. In the limit g » co the ground
state energy is obtained exactly and the phase transition is first-order. A 1/g expansion
allows us to get an approximate expression for the line in the (g, D)-plane separating
regions where the transition changes from first- to second-order.

Let us first consider a generalisation of the classical g-state Potts (1952) model for
which the Potts variablesn =0,1,2,...,g—1lieonthe N 4 vertices of a d-dimensional
hypercubical lattice. The coupling K, is between first neighbours and of the usual
type in the temporal direction, whereas in the (D = d — 1)-dimensional hypercubical
slices there is a coupling K, between the 2P Potts variables lying on the vertices of
the N D-dimensional simplices. The multi-spin interaction has the form introduced
by Enting (1975).
The Hamiltonian reads

—B%= K. {I(Z 3 {aq[nl(llm)]_ 1}+Kp { Z 3 {aq[ns(i.m)]n 1/‘1} (1)

s(j,m

where the first sum runs over the links /(j, m) in the temporal direction and the second
sum over the D-dimensional simplices s(j, m). 8,(r) is a Kronecker delta-function
modulo q:

142 2
8,(r)== qz cos(ip ) (2)
qp=0 q
The n variables are defined as (see figure 1)
Miim) = Mim+1~ Nim (3)

for the temporal link /(j, m) joining spin j in the mth temporal slice to spin j in the
(m +1)th temporal slice, and
2P
NsGom = 2, Mim (4)
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Figure 1. The coupling K, is between nearest-neighbour Potts variables in the temporal
direction: K, in the temporal slice m couples (a) two nearest-neighbour Potts variables
n;o and n;; when d =2 and () four variables n;q, 71, n;2 and ;3 around a plaquette when
d=3.

for the simplex j in the mth temporal slice, the sum running over the 2P vertices jk
of the simplex.

The multi-spin interaction introduced above reduces to the Ising multi-spin interac-
tion when g =2 with the following correspondence:

n=0 o=1; n=1 o=-1.

We make use of the transfer matrix technique (Lajzerowicz and Pfeuty 1971,
Fradkin and Susskind 1978, Kogut 1979) to get the D-dimensional quantum Hamil-
tonian formulation of the model in the r-continuum limit. When the temporal lattice
spacing T goes to zero, the transfer matrix becomes

T =exp(-7H) = 1-78 +0(. (5)

The transfer matrix connecting to successive slices m and m+1 in the temporal
direction

Trm+1 =exp[—L(m, m +1)] (6)

involves the Lagrangian #(m, m + 1) which, according to equations (1), (3) and (4),
may be written

$(m,m+1)————}:[ (Dg ) q] ~K. 3 [84(n)=n)=1]
SrlafE

k=0 q

where X, is a sum over the N D yertices in the temporal slices. Primed variables refer
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to the (m + th slice. T is a g~ ® x q™” matrix with the matrix elements (equations
(6), (7))
K, T1 5t '
T...,mﬂ—exp{—-— —-8( Y n,k) -K, Y [1-8,(n]—n;)]
251lq k=0 7
2D-1
a5 )
2 i k=0
On each vertex j we introduce the cyclic states |n;) (n,=0,1,2,...,9-1) and

unitary operators C, and R such that
Ci\n;) = exp( 2mn;/ q)in;)
Rijn;y=1n;+1) Rl|npy=|n;—1)
|n;+q)=|ny). 9

These operators give back the Pauli spin operators &, and &, when g =2. On the
same site, using equation (9), we get the commutation rules

R,C; = exp(—i2m/q)CR;
R} ¢ =exp(i2m/q)CR]
Ci=R=1 (10)

whereas the operators commute on different sites. The T-matrlx may be written as
an operator product T="11"1 involving the operator T, which is diagonal in the
basis introduced above and reads

. 2D-1
T,=exp{ “z (O &) +uc]} a1
p=1
and the operator T, such that
TZIOﬂip =1 Tzll aip = €Xp(—K;) TZIn aips = €xp(—nK;). (12)

In order to get for T the form given in equation (5) in the r-continuum limit, we are
led to take K, ~7 and 7~exp(— K,), i.e. the extreme anisotropic limit K, »0 and
K, - o for the couplings. Then Tzl,,ﬁ.,,s is of order 7" and n-flips contributions may
be ignored when n =2, Then

T,= iy L3S (#r+uc)+00?) (13)
i p=1
where 7 =q exp(—K,). With K, = Ar we have
f=i+ )j“{ [(” 1 ‘,k) +Hc]+~—2“z (B? +HC)+0(r?) (14)
j p=1 2 i p=1

and the D-dimensional quantum Hamiltonian reads

n 201

AN =-5-T T (O &) +Hc]——2 T (R +uo). (15)
i p=1 i p=1

The dual lattice may be constructed through a positive shift of the original lattice by

half a lattice spacing in each of the D spatial directions. The dual vertices lie in the

centre of the simplices of the original lattice (figure 2). Let us keep the same index
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Figure 2. Dual lattice: the dual vertices (squares) lie in the centre of the simplices of the
original lattice (heavy lines), i.e. (a) of the links when D =1 or (b) of the plaquettes when
D =2, The arrows give the translations in which original and dual vertices correspond.

j for a vertex of the original lattice and the corresponding one on the dual lattice and
let &, ({=1,2,...,D)be the basis vectors of the lattices. We define the dual operators
as

2D-1
« N P
= n Clk Dl= H Ri—):lD-lml"rRi—zP-l my (16)
k=0 nymy
with
D D
Y nieven=0 Y m;odd>0
=1 I=1

and the vertex j—=/%; ni, is deduced from the vertex j through a translation by a
vector t = -3, nid; (see figures 3(a), (b)). These are unitary operators

§i§; Eﬁ;ﬁ; =1
with the same algebra as Rand € (figures 3(c), (d))

$!D; = exp(i2n/q)D;S] (17a)
$D, = exp(—i2w/q)D;$; (176)
Si=p?=1 (17¢)

and they commute on different sites. Furthermore (figure 3(e))

A

Rjisp 5= kH Dy (18)
so that the original Hamiltonian may be rewritten with the dual operators as

Any=-L5§ [(yﬁlp,k) +HC]-‘—Zqz (§” +Ho)

2q i p=1 i p=1
=AHQL™Y (19)
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Figure 3. Dual operators (here for D = 2). (a) The dual operator D; (square) is an infinite
product of R (full circles) and R' (open circles) operators. () §f (square) is a product
of four ¢ operators on the vertices of simplex ; (tnangles) (c) In the operator product
S D all operators commute except on site j where C,R, gives the factor exp(121r/q)

In SkD (k # ) either all operators commute or the operator products ¢R"and CR enter
in palrs leadmg to a cancellation of the exponential factors. (e) In the operator product
Hk -0 D,k (squares), R,ﬂ, 1 & (full circle) enters only once whereas all other R and R’
operators enter the product in pairs under the form (RR" =10r (R'R)” =1. Here p=1
in region A and p =2 in region B.

since H takes the same form with D and $ as with € and R. It follows that H is
self-dual for all ¢ and D, and when there is a unique phase transition it occurs at the
critical coupling A. = 1.

According to equation (19), the ground state energy per site when A <1, £-(A),
is related to its value in the low-temperature phase (A > 1) through

e<(A)=Ae=(A7H). (20)
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Working in the basis where the ¢ operators are diagonal, appropriate to the low-
temperature phase, the Hamiltonian may be rewritten as

H=NPA/q+H,+V (21a)
N 20-1
H0=—A25q( ¥ n,k> (21b)
i k=0
- l q_l A~
v=—YY R (21c)
q i p=1

In this basis Ié,- flips the Potts state on site j. The gp degenerate ground states of H,
are not coupled by Vto any finite order in perturbation theory, and we may proceed
to a perturbation expansion on the ground state |0) where all the Potts variables are
in the same state n; = 0 for all j.

Going up to terms of order 1/g (Kogut and Sinclair 1981) we get

e(A)=—A +$(A—ﬁ)+0(‘—;§) (22a)

and using equation (20)

AZ

. D——/\>+O(q—1§)' (226)

e<(/\)=—1+;1—(1—2

In the limit g - oo the transition is first-order for all D with a latent heat
ad 0
a=lim (3=-22) -1 (23)
A=Ac=1

Up to terms of order 1/q we get

12°02°+1) 1
=1 Soo o( 2) (24)
so that to this order the latent heat vanishes on the line
2P2P +1)
c =—F3 25
44D) = 5517 (25)

in the (g, D)-plane (figure 4), which is the frontier between first-order (on the high-q
side) and second-order regions. In agreement with the result previously obtained by
Kogut er al (1980) for the quantum Potts chain, equation (25) gives g.(1) = 6, whereas
the exact result is known to be gq.(1) =4 (Baxter 1973). When D =0, the classical
counterpart is a g-state Potts model on the linear chain with an external field, the
quantum Hamiltonian is easily diagonalised and the ground state energy is

e =‘§ {g=2)A +D+[g* (A ~1)*+4gA1"%), (26)

Up to terms of first order in 1/4 this result agrees with equations (22a) and (225) above.
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Figure 4. Approximate frontier of the first-order region in the (g, D)-plane on which the
latent heat vanishes up to terms of order 1/q. The point (g =4, D = 1) belongs to and
the line q¢ = 1 (percolation limit) is an asymptote for the exact frontier.
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