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LElTER TO THE EDITOR 

Self-dual D-dimensional quantum Potts model with 
multi-spin interactions 

Loi'c Turban 
Laboratoire de Physique du Solidet, UniversitC de Nancy I, FacultC des Sciences, BP no 
239, F-54506 Vandoeuvre les Nancy, France 

Received 21 January 1982 

Abstract. We introduce a family of Ddimensional q-state quantum Potts models with 
multi-spin interactions which are self-dual for any D. These models are introduced using 
their (d  = D + 1)-dimensional classical formulations and the transfer matrix technique. 
The self-duality is proved on the quantum Hamiltonian. In the limit q + CO the ground 
state energy is obtained exactly and the phase transition is first-order. A l / q  expansion 
allows us to get an approximate expression for the line in the (q, D)-plane separating 
regions where the transition changes from first- to second-order. 

Let us first consider a generalisation of the classical q-state Potts (1952) model for 
which the Potts variables n = 0, 1,2,  . , . , 4  - 1 lie on the N d  vertices of a ddimensional 
hypercubical lattice. The coupling K, is between first neighbours and of the usual 
type in the temporal direction, whereas in the (D = d - 1)dimensional hypercubical 
slices there is a coupling K,, between the 2D Potts variables lying on the vertices of 
the N D  Ddimensional simplices. The multi-spin interaction has the form introduced 
by Enting (1975). 

The Hamiltonian reads 

where the first sum runs over the links I (  j, m) in the temporal direction and the second 
sum over the Ddimensional simplices s ( j ,  m). S, ( r )  is a Kronecker delta-function 
modulo 4 :  

1 - 1  

4 P = o  4 
a, ( t )  = - y cos( 3 t)  . 

The v variables are defined as (see figure 1) 

V f ( j . m ) = n j , m + l - n j . m  (3) 
for the temporal link l ( j ,  m) joining spin j in the mth temporal slice to spin j in the 
(m + 1)th temporal slice, and 
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Figure 1. The coupling K,  is between nearest-neighbour Potts variables in the temporal 
direction: KO in the temporal slice m couples (a )  two nearest-neighbour Potts variables 
nio and ni l  when d = 2 and ( b )  four variables niO, nil, niz and ni3 around a plaquette when 
d = 3 .  

for the simplex j in the mth temporal slice, the sum running over the 2O vertices jk 
of the simplex. 

The multi-spin interaction introduced above reduces to the Ising multi-spin interac- 
tion when q = 2 with the following correspondence: 

n = O  U =  1; n = l  U = -1. 

We make use of the transfer matrix technique (Lajzerowicz and Pfeuty 1971, 
Fradkin and Susskind 1978, Kogut 1979) to get the Ddimensional quantum Hamil- 
tonian formulation of the model in the 7-continuum limit. When the temporal lattice 
spacing 7 goes to zero, the transfer matrix becomes 

The transfer matrif connecting to successive slices m and m+l in the temporal 
direction 

(6)  

involves the Lagrangian 2 ( m ,  m + 1) which, according to equations (l), (3) and (41, 
may be written 

T,.,+I = exp[-2(m, m + 1)l 

where Zi is a sum over the ND vertices in the temporal slices. Primed variables refer 
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to the (m + 1)th slice. f is a 4 N D  x q N D  matrix with the matrix elements (equations 
(61, (7)) 

On each verte: j we introduce the cyclic states Ini) (nj = 0 , 1 , 2 ,  . . . ,4  - 1 )  and 
unitary operators Cj and Rj  such that 

ej \nj)  = exp(i 2 ~ n j / q ) l n j )  

Rjlnj) = )nj + 1) 12; Inj) = Jnj - 1 )  
Inj +4)  = Ini). (9) 

These operators give back the Pauli spin operators &z and ex when 4 = 2. On the 
same site, using equation (9), we get the commutation rules 

Ric. = exp (-i2 T/  4 )e$ 
12;ei = exp(i2?r/q)@: 

(10) 
A I  e 9 = ~ 4 = 1  

whereas the operator\commute on different sites. The :-matrix may be written as 
an operator product T = flf2fl involving the operator TI which is diagonal in the 
basis introduced above and reads 

and the operator f2 such that 

In order to get for f the form given in equation ( 5 )  in the 7-continuum limit, we are 
led to take K p - 7  and 7-exp(--KT), i.e. the extreme anisotropic limit KP+O and 
KT+aO for the couplings. Then T21nflip is of order 7" and n-flips contributions may 
be ignored when n 2 2. Then 

where 7 = 4 exp(-KT). With K,, = A7 we have 

and the D-dimensional quantum Hamiltonian reads 

The dual lattice may be constructed through a positive shift of the original lattice by 
half a lattice spacing in each of the D spatial directions. The dual vertices lie in the 
centre of the simplices of the original lattice (figure 2). Let us keep the same index 
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F w e  2. Dual lattice: the dual vertices (squares) lie in the centre of the simplices of the 
original lattice (heavy lines), i.e. (a) of the links when D = 1 or ( b )  of the plaquettes when 
D = 2. The arrows give the translations in which original and dual vertices correspond. 

j for a vertex of the original lattice and the corresponding one on the dual lattice and 
let Cr (I  = 1,2 ,  . . . , D )  be the basis vectors of the lattices. We define the dual operators 
as 

(16) * t  
Z D - 1  

3; = n e j k  D j  = n f i j - X y - 1  n1;Pj-zf-l mi;, 
k = O  n r m  

with 
D D 

1 = 1  I = 1  
C nr even 3 0 m,odd>O 

and the vertex j-XE, nrSl is deduced from the vertex j through a translation by a 
vector t = -zEl nl;, (see figures 3 ( a ) ,  (b) ) .  These are unitary operators 

j.j? / I  =LjJj? = i 

S^,'Ljj = exp(i2?r/q)dj$ (17a) 

with the same algebra as 2 and (figures 3(c),  ( d ) )  

$@, = exp(-i2?r/q)D,ij (176) 

S * 4 = L j ? = i  ( 1 7 ~ )  

and they commute on different sites. Furthermore (figure 3 ( e ) )  

so that the original Hamiltonian may be rewritten with the dual operators as 
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Figure 3. Dual operators (here for D = 2). (a) The dual operator D, (square) is an infinite 
product of d (full circles) and at  (open circles) operators. ( 6 )  3; (square) is a product 
of four 6 ooerators on the vertices of simplex j (tri?nlgles). ( c )  In the operator product 
$6. all operators commute except on site i where C,Rf gives the factor exp(i2?/?). ( d )  
In &, (k # j )  either all operators commute or the operator products 6d' and CR enter 
in pairsJeading to a cancellation of the exponential factors. (e) In the operator, product 

k = o  Dfk (squares), R,+,p_, ;, (full circle) enters only once whereas all other R and d' 
operators enter the product in pairs under the form = 1 or (R'd)' = 1. Here p = 1 
in region A and p = 2 in region B. 

n Z D - I  

since I? takes the same form with 6 and ŝ  as with 6 and 2. It follows that I? is 
self-dual for all q and D, and when there is a unique phase transition it occurs at the 
critical coupling A, = 1. 

According to equation (19), the ground state energy per site when A < 1, &<(A), 
is related to its value in the low-temperature phase (A > 1) through 

&<(A) =A&&-'). (20) 
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Working in the basis where the 
temperature phase, the Hamiltonian may be rewritten as 

operators are diagonal, appropriate to the low- 

1 q-1  

4 i P = l  
Q = - - X  Rp. (21c) 

In this basis Ri flips the Potts state on site j .  The g D  degenerate ground states of go 
are not coupled by to any finite order in perturbation theory, and we may proceed 
to a perturbation expansion on the ground state 10) where all the Potts variables are 
in the same state ni = 0 for all j .  

Going up to terms of order l / q  (Kogut and Sinclair 1981) we get 

and using equation (20) 

& < ( A ) = - l + -  1-- A 2  )+o($). :( 2D-A 

In the limit q + 00 the transition is first-order for all D with a latent heat 

Up to terms of order l /q  we get 

so that to this order the latent heat vanishes on the line 

2 O ( 2 O  + 1) 
4c(D) = (2D - 1 ) 2  

in the (q, D)-plane (figure 4), which is the frontier between first-order (on the high-q 
side) and second-order regions. In agreement with the result previously obtained by 
Kogut et a1 (1980) for the quantum Potts chain, equation (25) gives 4 J l )  = 6, whereas 
the exact result is known to be q c ( l ) = 4  (Baxter 1973). When D =0, the classical 
counterpart is a q-state Potts model on the linear chain with an external field, the 
quantum Hamiltonian is easily diagonalised and the ground state energy is 

1 
E =--{(4-2)(A +1)+[q2(A -1)2+4qA]"2}. 

29 

Up to terms of first order in l / q  this result agrees with equations (22a) and (226) above. 



Letter to the Editor L249 

n 
U 

Figure 4. Approximate frontier of the first-order region in the (9, D)-plane on which the 
latent heat vanishes up to terms of order l/q. The point (9  = 4, D = 1 )  belongs to and 
the line q = 1 (percolation limit) is an asymptote for the exact frontier. 
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