Self-dual D-dimensional quantum Potts model with multi-spin interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L243
(http://iopscience.iop.org/0305-4470/15/5/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:55

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Self-dual D-dimensional quantuin Potts model with multi-spin interactions

Loïc Turban
Laboratoire de Physique du Solidet, Université de Nancy I, Faculté des Sciences, BP no 239, F-54506 Vandoeuvre les Nancy, France

Received 21 January 1982

Abstract

We introduce a family of D-dimensional q-state quantum Potts models with multi-spin interactions which are self-dual for any D. These models are introduced using their $(d=D+1$)-dimensional classical formulations and the transfer matrix technique. The self-duality is proved on the quantum Hamiltonian. In the limit $q \rightarrow \infty$ the ground state energy is obtained exactly and the phase transition is first-order. A $1 / q$ expansion allows us to get an approximate expression for the line in the (q, D)-plane separating regions where the transition changes from first- to second-order.

Let us first consider a generalisation of the classical q-state Potts (1952) model for which the Potts variables $n=0,1,2, \ldots, q-1$ lie on the N^{d} vertices of a d-dimensional hypercubical lattice. The coupling K_{r} is between first neighbours and of the usual type in the temporal direction, whereas in the ($D=d-1$)-dimensional hypercubical slices there is a coupling K_{ρ} between the 2^{D} Potts variables lying on the vertices of the $N^{D} D$-dimensional simplices. The multi-spin interaction has the form introduced by Enting (1975).

The Hamiltonian reads

$$
\begin{equation*}
-\beta \mathscr{H}=K_{r} \sum_{\{(i, m)\}}\left\{\delta_{q}\left[\eta_{l(j, m)}\right]-1\right\}+K_{\rho} \sum_{\{s(j, m)\}}\left\{\delta_{q}\left[\eta_{s(j, m)}\right]-1 / q\right\} \tag{1}
\end{equation*}
$$

where the first sum runs over the links $l(j, m)$ in the temporal direction and the second sum over the D-dimensional simplices $s(j, m), \delta_{q}(r)$ is a Krönecker delta-function modulo q :

$$
\begin{equation*}
\delta_{q}(r)=\frac{1}{q} \sum_{p=0}^{q-1} \cos \left(\frac{2 \pi p}{q} r\right) \tag{2}
\end{equation*}
$$

The η variables are defined as (see figure 1)

$$
\begin{equation*}
\eta_{(l, m)}=n_{i, m+1}-n_{i, m} \tag{3}
\end{equation*}
$$

for the temporal link $l(j, m)$ joining spin j in the m th temporal slice to spin j in the ($m+1$)th temporal slice, and

$$
\begin{equation*}
\eta_{s(i, m)}=\sum_{k=0}^{2^{D}-1} n_{i k, m} \tag{4}
\end{equation*}
$$

+ Laboratoire associé au CNRS no 155.

10)

(b)

Figure 1. The coupling K_{τ} is between nearest-neighbour Potts variables in the temporal direction: K_{o} in the temporal slice m couples (a) two nearest-neighbour Potts variables $n_{i 0}$ and $n_{i 1}$ when $d=2$ and (b) four variables $n_{j 0}, n_{i 1}, n_{i 2}$ and $n_{j 3}$ around a plaquette when $d=3$.
for the simplex j in the m th temporal slice, the sum running over the 2^{D} vertices $j k$ of the simplex.

The multi-spin interaction introduced above reduces to the Ising multi-spin interaction when $q=2$ with the following correspondence:

$$
n=0 \quad \sigma=1 ; \quad n=1 \quad \sigma=-1
$$

We make use of the transfer matrix technique (Lajzerowicz and Pfeuty 1971, Fradkin and Susskind 1978, Kogut 1979) to get the D-dimensional quantum Hamiltonian formulation of the model in the τ-continuum limit. When the temporal lattice spacing τ goes to zero, the transfer matrix becomes

$$
\begin{equation*}
\hat{T}=\exp (-\tau \hat{H}) \underset{\tau \rightarrow 0}{\sim} \hat{1}-\tau \hat{H}+O\left(\tau^{2}\right) \tag{5}
\end{equation*}
$$

The transfer matrix connecting to successive slices m and $m+1$ in the temporal direction

$$
\begin{equation*}
T_{m, m+1}=\exp [-\mathscr{L}(m, m+1)] \tag{6}
\end{equation*}
$$

involves the Lagrangian $\mathscr{L}(m, m+1)$ which, according to equations (1), (3) and (4), may be written

$$
\begin{align*}
\mathscr{L}(m, m+1)= & -\frac{K_{\rho}}{2} \sum_{i}\left[\delta_{q}\left(\sum_{k=0}^{2 D-1} n_{j k}^{\prime}\right)-\frac{1}{q}\right]-K_{\tau} \sum_{i}\left[\delta_{q}\left(n_{j}^{\prime}-n_{j}\right)-1\right] \\
& -\frac{K_{\rho}}{2} \sum_{j}\left[\delta_{q}\left(\sum_{k=0}^{2 D-1} n_{j k}\right)-\frac{1}{q}\right] \tag{7}
\end{align*}
$$

where Σ_{i} is a sum over the N^{D} vertices in the temporal slices. Primed variables refer
to the $(m+1)$ th slice. \hat{T} is a $q^{N^{D}} \times q^{N^{D}}$ matrix with the matrix elements (equations (6), (7))

$$
\begin{align*}
T_{m, m+1}=\exp \{ & -\frac{K_{p}}{2} \sum_{i}\left[\frac{1}{q}-\delta_{q}\left(\sum_{k=0}^{2 D-1} n_{j k}^{\prime}\right)\right]-K_{\tau} \sum_{j}\left[1-\delta_{q}\left(n_{j}^{\prime}-n_{j}\right)\right] \\
& \left.-\frac{K_{p}}{2} \sum_{j}\left[\frac{1}{q}-\delta_{q}\left(\sum_{k=0}^{2 D-1} n_{j k}\right)\right]\right\} \tag{8}
\end{align*}
$$

On each vertex j we introduce the cyclic states $\left|n_{j}\right\rangle\left(n_{i}=0,1,2, \ldots, q-1\right)$ and unitary operators \hat{C}_{j} and \hat{R}_{j} such that

$$
\begin{align*}
& \hat{C}_{j}\left|n_{j}\right\rangle=\exp \left(\mathrm{i} 2 \pi n_{j} / q\right)\left|n_{i}\right\rangle \\
& \hat{R}_{j}\left|n_{j}\right\rangle=\left|n_{i}+1\right\rangle \quad \hat{R}_{j}^{\dagger}\left|n_{j}\right\rangle=\left|n_{j}-1\right\rangle \\
& \left|n_{j}+q\right\rangle \equiv\left|n_{j}\right\rangle . \tag{9}
\end{align*}
$$

These operators give back the Pauli spin operators $\hat{\sigma}_{z}$ and $\hat{\sigma}_{x}$ when $q=2$. On the same site, using equation (9), we get the commutation rules

$$
\begin{align*}
& \hat{R}_{j} \hat{C}_{j}=\exp (-\mathrm{i} 2 \pi / q) \hat{C}_{i} \hat{R}_{j} \\
& \hat{R}_{i}^{\dagger} \hat{C}_{j}=\exp (\mathrm{i} 2 \pi / q) \hat{C}_{j} \hat{R}_{i}^{\dagger} \\
& \hat{C}^{q} \equiv \hat{R}^{q}=\hat{1} \tag{10}
\end{align*}
$$

whereas the operators commute on different sites. The T-matrix may be written as an operator product $\hat{T}=\hat{T}_{1} \hat{T}_{2} \hat{T}_{1}$ involving the operator \hat{T}_{1} which is diagonal in the basis introduced above and reads

$$
\begin{equation*}
\hat{T}_{1}=\exp \left\{\frac{K_{\rho}}{2} \sum_{i} \frac{1}{2 q} \sum_{p=1}^{q-1}\left[\left(\prod_{k=0}^{2 D-1} \hat{C}_{j k}\right)^{p}+\mathrm{HC}\right]\right\} \tag{11}
\end{equation*}
$$

and the operator \hat{T}_{2} such that

$$
\begin{equation*}
\left.\hat{T}_{2}\right|_{0 \text { fip }}=\left.1 \quad \hat{T}_{2}\right|_{1 \text { fip }}=\left.\exp \left(-K_{\tau}\right) \quad \hat{T}_{2}\right|_{n \text { fips }}=\exp \left(-n K_{\tau}\right) . \tag{12}
\end{equation*}
$$

In order to get for \hat{T} the form given in equation (5) in the τ-continuum limit, we are led to take $K_{\rho} \sim \tau$ and $\tau \sim \exp \left(-K_{\tau}\right)$, i.e. the extreme anisotropic limit $K_{\rho} \rightarrow 0$ and $K_{\tau} \rightarrow \infty$ for the couplings. Then $\left.\hat{T}_{2}\right|_{n \text { fips }}$ is of order τ^{n} and n-flips contributions may be ignored when $n \geqslant 2$. Then

$$
\begin{equation*}
\hat{T}_{2}=\hat{1}+\frac{\tau}{2 q} \sum_{j} \sum_{p=1}^{q-1}\left(\hat{R}_{j}^{p}+\mathrm{HC}\right)+\mathrm{O}\left(\tau^{2}\right) \tag{13}
\end{equation*}
$$

where $\tau=q \exp \left(-K_{\tau}\right)$. With $K_{\rho}=\lambda \tau$ we have
$\hat{T}=\hat{1}+\frac{\lambda \tau}{2 q} \sum_{i} \sum_{p=1}^{q-1}\left[\left(\prod_{k=0}^{2 \mathrm{D}-1} \hat{C}_{i k}\right)^{p}+\mathrm{HC}\right]+\frac{\tau}{2 q} \sum_{i} \sum_{p=1}^{q-1}\left(\hat{R}_{j}^{p}+\mathrm{HC}\right)+\mathrm{O}\left(\tau^{2}\right)$
and the D-dimensional quantum Hamiltonian reads

$$
\begin{equation*}
\hat{H}(\lambda)=-\frac{\lambda}{2 q} \sum_{i} \sum_{p=1}^{q-1}\left[\left(\prod_{k=0}^{2 D-1} \hat{C}_{i k}\right)^{p}+\mathrm{HC}\right]-\frac{1}{2 q} \sum_{i} \sum_{p=1}^{q-1}\left(\hat{R}_{j}^{p}+\mathrm{HC}\right) \tag{15}
\end{equation*}
$$

The dual lattice may be constructed through a positive shift of the original lattice by half a lattice spacing in each of the D spatial directions. The dual vertices lie in the centre of the simplices of the original lattice (figure 2). Let us keep the same index

(a)

(b)

Figure 2. Dual lattice: the dual vertices (squares) lie in the centre of the simplices of the original lattice (heavy lines), i.e. (a) of the links when $D=1$ or (b) of the plaquettes when $D=2$. The arrows give the translations in which original and dual vertices correspond.
j for a vertex of the original lattice and the corresponding one on the dual lattice and let $\hat{\nu}_{l}(l=1,2, \ldots, D)$ be the basis vectors of the lattices. We define the dual operators as

$$
\begin{equation*}
\hat{S}_{i}^{+}=\prod_{k=0}^{2 D-1} \hat{C}_{i k} \quad \hat{D}_{i}=\prod_{n_{l}, m_{i}} \hat{R}_{j-\Sigma_{i-1}^{D} n_{l} \hat{\nu}_{r}} \hat{R}_{j-\Sigma_{i-1} m_{i} \hat{\nu}_{l}} \tag{16}
\end{equation*}
$$

with

$$
\sum_{l=1}^{D} n_{l} \text { even } \geqslant 0 \quad \sum_{l=1}^{D} m_{l} \text { odd }>0
$$

and the vertex $j-\sum_{l=1}^{D} n_{1} \hat{\nu}_{l}$ is deduced from the vertex j through a translation by a vector $t=-\sum_{i=1}^{D} n_{l} \hat{\nu}_{l}$ (see figures $3(a),(b)$). These are unitary operators

$$
\hat{S}_{i} \hat{S}_{j}^{\dagger} \equiv \hat{D}_{j} \hat{D}_{j}^{\dagger}=\hat{1}
$$

with the same algebra as \hat{R} and \hat{C} (figures $3(c),(d)$)

$$
\begin{align*}
& \hat{S}_{i}^{\dagger} \hat{D}_{i}=\exp (\mathrm{i} 2 \pi / q) \hat{D}_{j} \hat{S}_{i}^{\dagger} \tag{17a}\\
& \hat{S}_{j} \hat{D}_{j}=\exp (-\mathrm{i} 2 \pi / q) \hat{D}_{j} \hat{S}_{i} \tag{17b}\\
& \hat{S}_{i}^{q} \equiv \hat{D}_{j}^{q}=\hat{1} \tag{17c}
\end{align*}
$$

and they commute on different sites. Furthermore (figure 3(e))

$$
\begin{equation*}
\hat{R}_{j+\sum_{i=1}^{D} \hat{\nu}_{l}}=\prod_{k=0}^{2 D-1} \hat{D}_{i k} \tag{18}
\end{equation*}
$$

so that the original Hamiltonian may be rewritten with the dual operators as

$$
\begin{align*}
\hat{H}(\lambda) & =-\frac{1}{2 q} \sum_{j} \sum_{p=1}^{q-1}\left[\left(\prod_{k=0}^{2 D-1} \hat{D}_{i k}\right)^{p}+\mathrm{HC}\right]-\frac{\lambda}{2 q} \sum_{i} \sum_{p=1}^{q-1}\left(\hat{S}_{j}^{p}+\mathrm{HC}\right) \\
& =\lambda \hat{H}\left(\lambda^{-1}\right) \tag{19}
\end{align*}
$$

Figure 3. Dual operators (here for $D=2$). (a) The dual operator D_{i} (square) is an infinite product of \hat{R} (full circles) and \hat{R}^{\dagger} (open circles) operators. (b) \hat{S}_{i}^{\dagger} (square) is a product of four \hat{C} operators on the vertices of simplex j (triangles). (c) In the operator product $\hat{S}_{i}^{\dagger} \hat{D}_{i}$ all operators commute except on site j where $\hat{C}_{i} \hat{R}_{i}$ gives the factor $\exp (\mathrm{i} 2 \pi / q)$. (d) In $\hat{S}_{k}^{\dagger} \hat{D}_{i}(k \neq j)$ either all operators commute or the operator products $\hat{C} \hat{R}^{\dagger}$ and $\hat{C} \hat{R}$ enter in pairs leading to a cancellation of the exponential factors. (e) In the operator product $\Pi_{k=0}^{2 D} \hat{D}_{j k}$ (squares), $\hat{R}_{j+\sum_{i-1} \hat{n}^{\prime}}$ (full circle) enters only once whereas all other \hat{R} and \hat{R}^{\dagger} operators enter the product in pairs under the form $\left(\hat{R} \hat{R}^{\dagger}\right)^{p}=1$ or $\left(\hat{R}^{\dagger} \hat{R}\right)^{p}=1$. Here $p=1$ in region A and $p=2$ in region B .
since \hat{H} takes the same form with \hat{D} and \hat{S} as with \hat{C} and \hat{R}. It follows that \hat{H} is self-dual for all q and D, and when there is a unique phase transition it occurs at the critical coupling $\lambda_{c}=1$.

According to equation (19), the ground state energy per site when $\lambda<1, \varepsilon_{<}(\lambda)$, is related to its value in the low-temperature phase ($\lambda>1$) through

$$
\begin{equation*}
\varepsilon<(\lambda)=\lambda \varepsilon_{>}\left(\lambda^{-1}\right) \tag{20}
\end{equation*}
$$

Working in the basis where the \hat{C} operators are diagonal, appropriate to the lowtemperature phase, the Hamiltonian may be rewritten as

$$
\begin{align*}
& \hat{H}=N^{D} \lambda / q+\hat{H}_{0}+\hat{V} \tag{21a}\\
& \hat{H}_{0}=-\lambda \sum_{j} \delta_{q}\left(\sum_{k=0}^{D-1} n_{i k}\right) \tag{21b}\\
& \hat{V}=-\frac{1}{q} \sum_{i} \sum_{p=1}^{q-1} \hat{R}_{j}^{p} . \tag{21c}
\end{align*}
$$

In this basis \hat{R}_{j} flips the Potts state on site j. The g_{D} degenerate ground states of \hat{H}_{0} are not coupled by \hat{V} to any finite order in perturbation theory, and we may proceed to a perturbation expansion on the ground state $|0\rangle$ where all the Potts variables are in the same state $n_{i}=0$ for all j.

Going up to terms of order 1/q (Kogut and Sinclair 1981) we get

$$
\begin{equation*}
\varepsilon_{>}(\lambda)=-\lambda+\frac{1}{q}\left(\lambda-\frac{1}{2^{D} \lambda-1}\right)+O\left(\frac{1}{q^{2}}\right) \tag{22a}
\end{equation*}
$$

and using equation (20)

$$
\begin{equation*}
\varepsilon_{<}(\lambda)=-1+\frac{1}{q}\left(1-\frac{\lambda^{2}}{2^{D}-\lambda}\right)+O\left(\frac{1}{q^{2}}\right) \tag{22b}
\end{equation*}
$$

In the limit $q \rightarrow \infty$ the transition is first-order for all D with a latent heat

$$
\begin{equation*}
\Delta=\lim _{q \rightarrow \infty}\left(\frac{\partial \varepsilon_{<}}{\partial \lambda}-\frac{\partial \varepsilon_{>}}{\partial \lambda}\right)_{\lambda=\lambda_{c}=1}=1 . \tag{23}
\end{equation*}
$$

Up to terms of order $1 / q$ we get

$$
\begin{equation*}
\Delta=1-\frac{1}{q} \frac{2^{D}\left(2^{D}+1\right)}{\left(2^{D}-1\right)}+\mathrm{O}\left(\frac{1}{q^{2}}\right) \tag{24}
\end{equation*}
$$

so that to this order the latent heat vanishes on the line

$$
\begin{equation*}
q_{\mathrm{c}}(D)=\frac{2^{D}\left(2^{D}+1\right)}{\left(2^{D}-1\right)^{2}} \tag{25}
\end{equation*}
$$

in the (q, D)-plane (figure 4), which is the frontier between first-order (on the high- q side) and second-order regions. In agreement with the result previously obtained by Kogut et al (1980) for the quantum Potts chain, equation (25) gives $q_{c}(1)=6$, whereas the exact result is known to be $q_{c}(1)=4$ (Baxter 1973). When $D=0$, the classical counterpart is a q-state Potts model on the linear chain with an external field, the quantum Hamiltonian is easily diagonalised and the ground state energy is

$$
\begin{equation*}
\varepsilon=-\frac{1}{2 q}\left\{(q-2)(\lambda+1)+\left[q^{2}(\lambda-1)^{2}+4 q \lambda\right]^{1 / 2}\right\} . \tag{26}
\end{equation*}
$$

Up to terms of first order in $1 / q$ this result agrees with equations (22a) and (22b) above.

Figure 4. Approximate frontier of the first-order region in the (q, D)-plane on which the latent heat vanishes up to terms of order $1 / q$. The point ($q=4, D=1$) belongs to and the line $q=1$ (percolation limit) is an asymptote for the exact frontier.

References

Baxter R J 1973 J. Phys. C: Solid State Phys. 6 L445-8
Enting I G 1975 J. Phys. A: Math. Gen. 8 1690-6
Fradkin E and Susskind L 1978 Phys. Rev. D 17 2637-58
Kogut J B 1979 Rev. Mod. Phys. 51 659-713
Kogut J B, Pearson R B, Shigemitsu J and Sinclair D K 1980 Phys. Rev. D 22 2447-64
Kogut J B and Sinclair D K 1981 Phys. Lett. 86A 38-42
Lajzerowicz J and Pfeuty P 1971 J. Physique (Suppl. Coll. C5a) 32 193-4
Potts R B 1952 Proc. Camb. Phil. Soc. 480 106-9

